Photonic Crystals and Tunable Time Delay

S. G. Johnson

M. L. Povinelli, J. D. Joannopoulos, *MIT*M. Geis, T. Lyszczarz, S. Spector, R. Williamson, L. Johnson, *MIT Lincoln Laboratories*

channel-drop filter

elimination of waveguide crosstalk

high transmission in wide-angle splitters

1D Scattering + Symmetry = Devices

3d crystal (complete gap)

2d crystal "slab"

1d crystal, grating

Tunable Time Delay

Group-velocity dispersion diverges at the band edge.

Tunable Time Delay Devices

Want: ~ 10 GHz bandwidth, $\Delta T = 10$ ns tunable delay $\sim 1\%$ index shift $\Delta n / n$

Tunability: a Figure of Merit

Sensitivity for etched grating

Dispersion and Signal Distortion

figure of merit
$$f = \frac{\text{spreading}}{\text{feature size}} \sim \text{spreading * bandwidth}$$

~
$$\Delta T$$
 * bandwidth * $\frac{\Delta \binom{1}{v}_{BW}}{\Delta \binom{1}{v}_{\Delta n}}$

Chirped Pulses

increasing frequency—

Wide envelope = No spreading

Effects of Gap Size

Large sensitivity for moderate dispersion

Low sensitivity for high dispersion

Effects of Gap Size

vary gap size, fixed mean index, in 1d system ...analyze sensitivity & dispersion

Worse Dispersion for Smaller Gaps

Worse Sensitivity for Smaller Gaps

Rules of Thumb:

low dispersion: gap
$$\% \stackrel{\sim}{>} \Delta n / n$$

high sensitivity: gap %
$$\stackrel{\sim}{>} \Delta \omega_{edge}$$
 / ω_{edge}

Another possibility:

Dispersion Compensation

needs
coordinated, opposite tuning
of both band edges

Losses

• In/out coupling

• Bends & crosstalk

• Roughness/disorder

Losses

• In/out coupling

chip to photonic crystal

• Bends & crosstalk

Roughness/disorder

000000000000000000

Example (2d) grated waveguide:

Direct coupling is very poor near band edge!

APPROVED FOR PUBLIC RELEASE – DISTRIBUTION UNLMITED

Apodization:

Continuously "turn on" grating

Theory:

Can arbitrarily improve coupling

...with some conditions

OR PUBLIC RELEASE – DISTRIBUTION UNLMITED

Losses

• In/out coupling
• chip to photonic crystal

Negligible for ~mm chip size and strip-like waveguides

Bends & crosstalk

Roughness/disorder

Losses

• In/out coupling

fiber to chip

chip to photonic crystal

Negligible for ~mm chip size and strip-like waveguides

Bends & crosstalk

Goal:

Roughness/disorder

< 10dB over ~ 50 ns, so < 0.2 dB/ns

corresponds to < 0.02 dB/cm in uniform Si

Roughness Strategies

- New fabrication methods
- Reduce tuning range via switching

• More photonic crystals...

3D crystal can suppress all radiation

- only reflections remain
- guide in air: larger area

1d/2d crystal can suppress *some* radiation

Waveguide surrounded by 1d photonic crystal:

Effect of an Incomplete Gap

Radiation from a *point* of roughness in 2D

~ losses from uncorrelated surface roughness

Conventional waveguide (matching modal area)

...with Si/SiO₂ Bragg mirrors (1D gap) 50% losses (dB)

Summary

- Delay tunability improves by ~100
- Large gap (& strong confinement) is key
 - for high sensitivity, low dispersion
- Coupling problem well-understood
- Low losses are a challenge
 - photonic crystals can help

²frequency from band edge / band-edge frequency

Photonic Crystals + Active Devices

Optical Bistability

optical "transistor" ... rectifier, logic, amplifier, etc.

threshold power $\sim 1 / VQ^2$

Theoretical results for photonic-crystal tapers:

• Proven adiabatic theorem:

slow tapers approach 100% transmission ... given simple conditions

- New coupled-mode theory for photonic crystals
 - efficient modeling of slow tapers in 3d
 - ... direct optimization of taper rate